On a Conjecture of D. Styer regarding Univalent Geometric and Annular Starlike Functions

نویسندگان

  • D. BSHOUTY
  • Juha M. Heinonen
چکیده

The aim of this paper is two-fold. First, to give a direct proof for the already established result of Styer which states that a univalent geometrically starlike function f is a univalent annular starlike function if f is bounded. Second, to show that the boundedness condition of f is necessary, thus disproving a conjecture of Styer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Test Starlike Functions for Approximation by Subordinate Polynomials

1 Presented by We construct a function f (z), univalent and starlike in the unit disc, with some interesting geometric and analytic properties. It turns out that its convolutions f * λn with a specific class of univalent polynomials λn(z) are not subordinate to the function itself. This provides a counterexample to a result of Greiner and Ruscheweyh.

متن کامل

Generating Starlike and Convex Univalent Functions

Alexander [1] was the first to introduce certain subclasses of univalent functions examining the geometric properties of the image f(D) of D under f . The convex functions are those that map D onto a convex set. A function w = f(z) is said to be starlike if, together with any of its points w, the image f(D) contains the entire segment {tw : 0 ≤ t ≤ 1}. Thus we introduce the denotations S = {f ∈...

متن کامل

Horadam Polynomials Estimates for $lambda$-Pseudo-Starlike Bi-Univalent Functions

In the present investigation, we use the Horadam Polynomials to establish upper bounds for the second and third coefficients of functions belongs to a new subclass of analytic and $lambda$-pseudo-starlike bi-univalent functions defined in the open unit disk $U$. Also, we discuss Fekete-Szeg$ddot{o}$ problem for functions belongs to this subclass.

متن کامل

The norm of pre-Schwarzian derivatives on bi-univalent functions of order $alpha$

‎In the present investigation‎, ‎we give the best estimates for the norm of the pre-Schwarzian derivative $ T_{f}(z)=dfrac{f^{''}(z)}{f^{'}(z)} $ for bi-starlike functions and a new subclass of bi-univalent functions of order $ alpha $‎, ‎where‎ ‎$Vert T_{f} Vert= sup_{|z|

متن کامل

Applications of subordination theory to starlike functions

Let $p$ be an analytic function defined on the open unit disc $mathbb{D}$ with $p(0)=1.$ The conditions on $alpha$ and $beta$ are derived for $p(z)$ to be subordinate to $1+4z/3+2z^{2}/3=:varphi_{C}(z)$ when $(1-alpha)p(z)+alpha p^{2}(z)+beta zp'(z)/p(z)$ is subordinate to $e^{z}$. Similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of Bernoulli $|w^{2}-1|=1$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005